If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3(5c + -1) + 9 = 36c2 + 1 + 12c Reorder the terms: 3(-1 + 5c) + 9 = 36c2 + 1 + 12c (-1 * 3 + 5c * 3) + 9 = 36c2 + 1 + 12c (-3 + 15c) + 9 = 36c2 + 1 + 12c Reorder the terms: -3 + 9 + 15c = 36c2 + 1 + 12c Combine like terms: -3 + 9 = 6 6 + 15c = 36c2 + 1 + 12c Reorder the terms: 6 + 15c = 1 + 12c + 36c2 Solving 6 + 15c = 1 + 12c + 36c2 Solving for variable 'c'. Reorder the terms: 6 + -1 + 15c + -12c + -36c2 = 1 + 12c + 36c2 + -1 + -12c + -36c2 Combine like terms: 6 + -1 = 5 5 + 15c + -12c + -36c2 = 1 + 12c + 36c2 + -1 + -12c + -36c2 Combine like terms: 15c + -12c = 3c 5 + 3c + -36c2 = 1 + 12c + 36c2 + -1 + -12c + -36c2 Reorder the terms: 5 + 3c + -36c2 = 1 + -1 + 12c + -12c + 36c2 + -36c2 Combine like terms: 1 + -1 = 0 5 + 3c + -36c2 = 0 + 12c + -12c + 36c2 + -36c2 5 + 3c + -36c2 = 12c + -12c + 36c2 + -36c2 Combine like terms: 12c + -12c = 0 5 + 3c + -36c2 = 0 + 36c2 + -36c2 5 + 3c + -36c2 = 36c2 + -36c2 Combine like terms: 36c2 + -36c2 = 0 5 + 3c + -36c2 = 0 Factor a trinomial. (5 + -12c)(1 + 3c) = 0Subproblem 1
Set the factor '(5 + -12c)' equal to zero and attempt to solve: Simplifying 5 + -12c = 0 Solving 5 + -12c = 0 Move all terms containing c to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + -12c = 0 + -5 Combine like terms: 5 + -5 = 0 0 + -12c = 0 + -5 -12c = 0 + -5 Combine like terms: 0 + -5 = -5 -12c = -5 Divide each side by '-12'. c = 0.4166666667 Simplifying c = 0.4166666667Subproblem 2
Set the factor '(1 + 3c)' equal to zero and attempt to solve: Simplifying 1 + 3c = 0 Solving 1 + 3c = 0 Move all terms containing c to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + 3c = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 3c = 0 + -1 3c = 0 + -1 Combine like terms: 0 + -1 = -1 3c = -1 Divide each side by '3'. c = -0.3333333333 Simplifying c = -0.3333333333Solution
c = {0.4166666667, -0.3333333333}
| 4(q^2-6q+9)=5(11-5q)-(q^2+1) | | 4p^2+9-12p=59-47p | | 25c^2+4+20c=c(c-15)-5 | | 2b=3(11+b) | | 2-u=-10u(u+1) | | (x+1)(x-6)=(2x+3)(x-6) | | 2c^2+7c-60=0 | | p^2+100-20p=3p(p-1) | | 8x^3=8x | | 4(x^2+4x+4)-3(x^2-6x+9)=x^2+5(3x-4x^2-1) | | 3p^2=14p-15 | | 7w^2-6w-16=0 | | 9d^2-20d+4=0 | | 3x+24=9 | | -(x^2+49+14x)=-7x(x+1) | | 3e^2-160=8(e-10) | | 3r^2-4r-20=0 | | 58-2x=10x+22x | | 2(4c^2+9+12c)=c^2+15c+64 | | 12-10x=105-31x | | 12+10x=105+-31x | | 42w^2-5w-3=0 | | 5x^2-12x-9=0 | | 8m^2-m-30=0 | | 2n-3=20 | | 12+10x=105-31x | | 4(2r+3)(2r-3)=-2(2r+15) | | 12+10x=105-31 | | 15d^2-8d-12=0 | | 3x+12=-27-10x | | 4r(r-1)=(8-r)(8+r) | | -60+10x=10x+20 |